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On Localization of Vorticity in Lorentz Lattice Gases 
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We study the generalized deterministic Lorentz lattice gases, in a fixed as well 
as in varying environments, in lattices with dimensions d>~ 3. We show that 
bounded orbits ("vortices") in these models are often contained in some lower 
dimensional subsets ("vortex sheets"t of these lattices. 
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Lorentz  lattice gases (LLG) ,  both  deterministic and stochastic ones, have 
been extensively studied recently. 1'-4~ In L L G  the immovable particles 
(scatterers) are situated at the sites of  some lattice and, more  importantly,  
a light particle can move  only along the bonds  of  this lattice. This makes 
these models more  restrictive than the classical Lorentz  gas. cs~ 

However,  a more  general class of  Lorentz  gas cellular au tomata  
( L G C A )  has two impor tant  new features: 

(1) In L G C A  different scatterers are allowed, i.e., the scatterers placed 
at different sites can be different. It is wor th  recalling that  in the Lorentz  gas 
all immovable  particles (scatterers) have the same shape of  spheres as well 
as in the other  classical modification of  the Lorentz  gas (Ehrenfest 's wind- 
tree modell6~), where all scatterers are identical rhombuses.  

(2) L G C A  contain also self-consistent models (sometimes these 
models are 'called flipping models)  where there is a feedback of  moving par- 
ticle(s) to the environment  of  randomly  distributed scatterers. This makes 
the class of  L G C A  au tomata  much richer than the class of  s tandard 
Lorentz  lattice gases with fixed environment.  Fur thermore,  it allows not  
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only for the traditional applications of LGCA to statistical mechanics 
and chemistry, but also for a theory of artificial life ~7~ and to a theory of 
computations) 81 

Observe that it makes sense to consider the self-consistent LGCA not 
only for the motion of a single particle (specimen), but also a simultaneous 
motion of several particles (species). In fact, in contrast to standard (non- 
self-consistent) LLG, in such models different particles (species) are 
involved in the nontrivial interactions because each particle (specimen) 
changes the environment in which other particles (species) live (move). 
One of the interesting new problems for self-consistent models is to study 
the dynamics in the space of all possible environments that can even be 
chaotic. <9~ It was pointed out recently <~~ that these models (especially the 
self-consistent ones) can also be useful in the analysis and interpretation of 
numerical simulations of PDEs. 

The studies of deterministic LLG were only numerical and always 
restricted to two dimensions. <~-3~1 The main reason for that was the 
totally new character of these models compared, e.g., to various models of 
a random walk in a random environment. Deterministic LGCA deal with 
a deterministic walk in a random environment, which drastically changes the 
character of the dynamics of such models. Therefore, standard methods of 
study of random-walk-type models fail here. This is the main reason why 
there are only a few rigorous mathematical papers devoted to the analysis 
of the LGCA. All of these studies are restricted to lattices in dimension 
two, d = 2. 

The first mathematical paper <t~ on high-dimensional, d > 2 ,  deter- 
ministic LGCA revealed a surprising new property of these systems. This 
property, which we call a localization of vorticity, means that in deter- 
ministic high-dimensional Lorentz lattice gases bounded orbits (vortices) 
are confined in subsets of a lower dimension than the dimension d of a 
lattice itself where the motion of particles is studied. The analogy between 
the bounded orbits in LGCA and vortices is natural because any such orbit 
eventually terminates in a periodic motion on some finite subset of a lattice 
(which can have a rather complex shape). 

It was shown in ref. 10 that such a localization of vorticity occurs in 
all non-self-consistent LGCA on cubic lattices with dimension d>~ 3. The 
only class of self-consistent LGCA for which the localization of vorticity 
was also proven in ref. 10 is rather narrow and restricted to d =  3. In this 
paper we give a simple proof that such localization occurs for all time- 
reversible self-consistent LGCA on cubic lattices with dimension d/> 3. We 
give also sufficient conditions that ensure the localization of vorticity on 
any (not necessarily cubic) lattices. 
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Now we give the exact definition of LGCA. We start with the cubic 
lattice 7/'/in R a, d~>2. A single particle with unit speed and 2d possible 
directions flows along the bonds of the lattice. When it reaches a vertex 
z~ Z,t it continues its motion in the direction defined by a state of z (a 
current local scattering rule or, simply, a current scatterer at z). In addi- 
tion, at the moments when the particle leaves a vertex the latter acquires 
some (generally a new) state, i.e., a local flow (scatterer) in a vertex is 
changed by the passage of the particle. 

In other words, each vertex z ~ a  contains a finite automaton ~b(z) 
which at a given moment can be in one of k states. A finite automaton in 
a given state represents a scattering rule (scatterer, a local flow) present at 
this moment in the vertex z e Z ' (  Namely, in Z d, d>~2, label the 2d edges 
(directions) coming to each vertex as 0, 1, 2 ..... 2 d -  1. We assume that the 
parallel and identically oriented edges are labeled by the same number at 
all vertices of 7/a and that the edges labeled by j and j + d (mod 2d) are 
parallel and have the opposite orientation. 

A scattering rule (scatterer) is given by a function ~: {0, 1 ..... 
2 d -  1 } ~ { 0, 1 ..... 2 d -  1 } : a particle approaching a vertex along edge j will 
leave that vertex along edge ~b(j). The scattering rules are local; thus the 
particle will approach the next vertex along the edge ~b( j )+d(mod2d) .  
Therefore for each of the 2d incoming edges a scattering rule also defines 
on which of the 2d outgoing edges the particle will leave. Thus the total 
number of scattering rules on the lattice 7/a equals (2d) 2a. 

An automaton ~(z) at any vertex z e Z  d is an infinite sequence of 
scattering rules {~bl(z), qb2(z) ..... ~b,,(z),...}. The dynamics of the system is 
defined as follows. A single particle with unit speed and 2d possible direc- 
tions flows along the bonds of the lattice. When it enters a vertex z ~ 7/'/in 
a state ~:(z)  it gets scattered according to the scattering rule ~bi(z) and it 
leaves a vertex z in a state ffi§ i(z)- 

Denote by �9 the space of all possible infinite sequences {~bi}, 
i = I, 2 ..... n ..... where each ~b~ is one of (2d) -~a scattering rules. Then the con- 
figuration space I2 (the space of all evolving environments) of our dynami- 
cal system is the set of all mappings 7/d---, ~. 

We discretize the flow by keeping track of the particle as it leaves the 
vertices. Thus W : = O x { 0 ,  1 ..... 2 d - l }  x T/a is the phase space of the 
cellular automaton under study. A point w = (w, v, (it, i 2 ..... ia) ) ~ W con- 
sists of the configuration of states (environment) co, the velocity direction 
v e { 0, 1 ..... 2 d -  1 } of the particle, and the location ( i l ,  i2 ..... i a) ~ 7/a of the 
particle. We denote by g: W---, W the discretized motion. 

This system generalizes all models of deterministic LLG considered so 
far. ll-3"ll'12) In fact we consider the most general LGCA on Z a, because 
there are no restrictions at all to a structure of sequences of local scattering 
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rules (scatterers) {~bi(z)}, i =  1, 2 ..... n ..... It was  always assumed that only  
one  or two  nontrivial  scattering rules are permitted and in the latter case 
these two  scattering rules a lways  alternate. I' 3, J'> The trivial scattering rule 
(Fig. la)  (straightahead; i.e., no  scattering) together with the pair o f  left 
and right mirrors (Fig. lc)  or with the left and right rotators  ( local  vor-  
tices) (Fig. lb)  were the only  types o f  scatterers studied numerical ly  (see, 
e.g., refs. i - 3  and 11). 

All these mode l s  assume that in s o m e  vertices the scattering rule is 
trivial for all i =  1, 2 ..... n .... and in all other vertices the scattering rule is 
the same for all i or it is one  for all odd  i's and the symmetr ic  one  for all 
even i's. The general izat ion o f  these mode l s  was  studied in ref. 12 where an 
arbitrary (but the same!)  finite sequence o f  scatterers was cyclically 
repeated in all vertices with a nontrivial  local  scattering. 

(I 9 I  1~ '2 
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Fig. 1. (a) The trivial (straightahead) rule: (b) rotators; (c) mirrors. 
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We call the orbit of a point w e  W closed (periodic) if there is a 
positive integer n such that g"(w) = w. The orbit of a point w ~ W is called 
bounded if the particle visits only a finite number of vertices in the lattice 
Z ~, i.e., g{g"(w)} is a finite set, where ~: W ~  7/a is the natural projection 
of the phase space W into Z a. 

Let {g'"(w)}, m = 0 ,  1,2 ..... be a bounded orbit. Then ~{g'"(w)} = 
{zt, z2 ..... z~.}, where z ie  7/,i, i=  1, 2 ..... k. We call a vertex zi essential if 
zi= ~g"(w) for infinitely many r. Otherwise a vertex z~Y_  '1 will be called 
nonessential for a given bounded orbit {g"'(w)}. 

The union of all essential vertices of a bounded orbit { gm(w)} will be 
called a core of this orbit and denoted as Cor{g"'(w)}.  Thus a core of a 
bounded orbit is the collection of all such vertices in Z a that the orbit visits 
infinitely many times. Therefore one thinks of this motion as some kind of 
a vortex. Obviously a bounded orbit {g'"(w)} spends a finite time outside 
its core. 

It was shown in refs. 12 and 10 that in LGCA in 7/2 the right and left 
rotators only can produce global vorticity, i.e., bounded orbits, among all 
scattering rules without backscattering. 

The situation for LGCA on Z a, d >~ 3, is different. In this case there are 
many scattering rules that can produce vorticity (bounded motion). How- 
ever, such "vortices" can fill in only some lower dimensional regions (Fig. 2). 

Let { g"'(w)} be a bounded orbit of an LGCA on some lattice. Con- 
sider the union of all bonds of this lattice such that both their ends belong 
to Cor{g'"(w)}. We denote this set by Sc(g"'(w)) and call it the skeleton 
of a bounded orbit { gin(W)}. 

Our first result deals with nonflipping (fixed scatterers) LGCA. (It is 
the generalization of Theorem 5 in ref. 10.) 

Theorem 1. Let {g'"(w)} be a bounded orbit of LGCA on 7/,/, 
d>~ 3, with a unique nontrivial local scattering rule ~b. Then the skeleton of 
{g'"(w)} cannot contain any polyhedron in 7/a that has a dimension 
greater than [log2 d] + 1, where [ .  ] denotes an integer part of a number. 

(Observe that Theorem 1 is trivially valid for d = 2 ,  but it does not 
provide any information in that case because [log_~d] + 1 equals the 
dimension of a lattice.) 

Proof. Suppose that Sc{g"'(w)} does contain a polyhedron P such 
that dim P = d  t ~>log2 d +  1. Then the total number of vertices of P is at 
least 2 a' > 2d. 

The total number c(Q) of oriented incoming edges at any vertex of a 
regular lattice Q is called the coordination number of this lattice. The coor- 
dination number of Z a equals 2d. Therefore there exist at least two different 
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Fig. 2. Two-dimensional vortex sheets on the cubic lattice. 

vertices zi~P, i= 1, 2, such that the orbit {g'"(w)} arrives at z~ and z2 
along two parallel and identically oriented bonds. However, the continua- 
tions of these paths that arrive at z~ and z2 always stay parallel because we 
have only one type of nontrivial scatterer (Fig. 3). Therefore they cannot 
belong to the same orbit. This contradiction proves the theorem. 
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Fig. 3. Parallel velocities produce orbits confined to parallel planes. 
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Theorem 1 has the following corollary, which can be proven by the 
verbatim repeating of the above proof. 

Corollary. Let {g'"(w)} be a bounded orbit of an LGCA on some 
regular lattice Q c R d with a unique nontrivial scattering rule ~b. Suppose 
that the number of vertices in a fundamental region of Q (elementary cell 
of a lattice) is greater than 2c(Q). Then the skeleton of {g'"(w)} cannot 
contain any polyhedron in Q that has the dimension d. 

R e m a r k  1. Again, this corollary does not provide any information 
in the planar case. 

R e m a r k  2. An estimation of the maximal dimension for a skeleton 
of a bounded orbit can be made much more precise for concrete examples 
of lattices (as, e.g., in Theorem 1 ). 

It is natural to ask whether or not the analogous localization of 
vorticity occurs in some self-consistent LGCA. We recall that these models 
should contain more than one type of nontrivial scatterer and the type of 
scatterer must change with time at all vertices with nontrivial scatterers. 

Obviously, a self-consistent LGCA without any restrictions on 
possible types of scatterers does not have the property of localization of 
vorticity. Indeed, one can put at each vertex of any polyhedron such a 
sequence of scatterers that is specially prepared to fill in this polyhedron. 
However, this property holds for the important class of time-reversible 
LGCA. [ F o r  example, the flipping-mirrors (rotators) model is non-time- 
invertible (time-invertible). ] 

T h e o r e m  2. Consider a self-consistent (flipping) LGCA on Z d, 
d>~ 3. Suppose that the dynamics is time-reversible. Then the skeleton of 
any bounded orbit cannot contain any polyhedron in 7/d with dimension 
greater than [log2 d] + 1. 

Proof'. Let z ~ Z d be some vertex. Denote by ~b,(z) a scatterer that is 
present at the vertex z at the moment t. It is easy to see that in a time- 
reversible LGCA ~b,+l(z)=~bTt(z). Therefore any time-reversible self- 
consistent LGCA contains exactly two nontrivial scattering rules that are 
inverse to each other. 

Now Theorem 2 follows immediately from the proof of Theorem 1. 

The analogous corollary of this theorem also holds. 

C o r o l l a r y .  Let { g'"(w)} be a bounded orbit of a time-reversible LGCA 
on some regular lattice O c Nd. Suppose that the number of vertices in a 
fundamental region of Q is greater than 2c(O). Then the skeleton of { g"(w)} 
belongs to some polyhedron in • that has dimension strictly less than d. 
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Remark 3. One can substitute 2c(Q) by c(Q) in the corollaries to 
Theorems 1 and 2 if the lattice ~ consists entirely of straight lines. 

So far we have considered the LGCA in infinite lattices. However, the 
same models can be considered in bounded subsets of lattices. We believe 
that the study of such models can also shed some light on the behavior of 
grid schemes in the numerical simulations of PDEs. 

We will give now the exact definition of such models. For  the sake of 
brevity we consider only cubic lattices. 

Let ~ ~ Z ~ be a bounded subset of a lattice 7/'( A point z ~ @ c 7/a is 
an inner point of N if all its 2d nearest neighbors also belong to ~.  We call 
Int(,~) the collection of all interior points of ~ .  A boundary 0 ~ =  
~\Int(_~). One cannot choose arbitrarily local scattering rules at the points 
of 0~  because the particle is not permitted to leave @. Keeping in mind 
this restriction, denote by /2 , ,  the set of all admissible mappings (environ- 
ments) ~--* 05 and by W~, := f2~, x {0, 1 ..... 2 d - 1  } x ~ the corresponding 
phase space, where {0, 1 ..... 2 d - 1 } ~  denotes the set of admissible (at a 
given z e ~ )  scattering rules. 

Results analogous to Theorems 1 and 2 hold for LGCA in bounded 
regions, where one should substitute a "bounded orbit" by a "bounded 
orbit that does not intersect the boundary a~ ."  The corresponding proofs 
are completely analogous to the case of infinite lattices. Because of that we 
will only formulate the statement analogous to Theorem 1. 

T h e o r e m  1'. Let { g'"(w)} be a bounded orbit of LGCA in .@ ~ 7/'1, 
d>~3, with a unique nontrivial local scattering rule. Let, moreover, 
{g"'(w)} c~0@=~b. Then the skeleton of {g"'(w)} cannot contain any 
polyhedron in 7/a that has a dimension greater than [log2 d] + 1. 

We believe that the results on the localization of bounded orbits ("vor- 
ticity") in subsets of lower dimensions ("vortex sheets") might have some 
applications for the analysis and interpretation of computer simulations of 
PDEs. 
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